These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Book Material. Additional material that is in the Text Book will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass anv test!
 NOTE THESE ARE DRAFT LECTURE NOTES!

Asprin - Acetyl Salicylic Acid

Strong Acid

$$
\mathrm{HNO}_{3}+\mathrm{HOH} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-} \quad 100 \% \text { dissociated }-\mathrm{HNO}_{3}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}
$$

Weak Acid

$\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \quad$ Acetic Acid or vinegar, less than 100% dissociated

Strong Base

$$
\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \quad \mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}
$$

Weak Base

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad \text { Ammonia, less than } 100 \% \text { dissociated }
$$

Arrhenius Acid: any substance that dissolves in water and increases the concentration of H^{+}

$$
\mathrm{HCl} \quad \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \quad \text { Arrhenius Acid }
$$

Arrhenius Base: any substance that dissolves in water and increases the concentration of OH^{-}

$$
\mathrm{NaOH} \quad \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \quad \text { Arrhenius Base }
$$

Reaction between and acid and a base involves H^{+}and OH^{-}

$$
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{HOH}+\mathrm{NaCl}
$$

An acid and a base react for form water and a salt
Bronsted-Lowry acid is a Proton $\left(\mathrm{H}^{+}\right)$Donor
Bronsted-Lowry Base is a Proton (H^{+}) Acceptor

HCl	$+\mathrm{HOH} \rightarrow \mathrm{H}_{3}{ }^{+}+\mathrm{Cl}^{-}$	$\mathrm{HNO}_{3}+\mathrm{HOH} \leftrightarrows \mathrm{NO}^{-}+{\mathrm{H} 3 \mathrm{O}^{+}}^{+}$
Acid	Base Hydronium Ion	Acid Base
NH4 ${ }^{+}$	$+\mathrm{HOH} \leftrightarrows \mathrm{NH} 3+\mathrm{H}_{3}{ }^{+}$	$\mathrm{NH} 3+\mathrm{HOH} \leftrightarrows \mathrm{NH}_{4}++\mathrm{OH}^{-}$
Acid	Base	Base Acid

$$
\begin{aligned}
& \underset{\text { Acid }}{\mathrm{H}_{3} \mathrm{PO}_{4}}+\underset{\text { Base }}{\mathrm{HOH} \leftrightarrows} \mathrm{HPO}_{4^{2-}}+{\mathrm{H} 3 \mathrm{O}^{+}}_{\text {Acid }}^{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}+\underset{\text { Base }}{\mathrm{HOH}} \leftrightarrows \\
& \hline \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned}
$$

$$
\mathrm{CO}_{3}^{2-}+\mathrm{HOH} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3^{+}}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Which one is the Acid?

Monoprotic Acid are capable of donating one proton: $\mathrm{HCl}+\mathrm{HOH} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
Polyprotic Acids can donate more than one proton: $\quad \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{array}{ll}
\mathrm{H} 2 \mathrm{SO}_{4}+\mathrm{HOH} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-} & 1^{\text {st }} \text { Proton removed } \\
\mathrm{HSO}_{4}^{-}+\mathrm{HOH} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{-} & 2^{\text {nd }} \text { Proton removed } \\
\mathrm{CO}_{3^{-}}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} & \begin{array}{l}
\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \\
\text {Base Acid }
\end{array} \\
\text { Base Acid }
\end{array}
$$

Amphiprotic(Amphoteric) Can behave as Bronsted Acid, donate H^{+}, or Bronsted Base, accept H^{+}

$$
\underset{\text { Acid }}{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \underset{\text { Base }}{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-}}
$$

Table 17.1 Polyprotic Acids and Bases

Acid Form	Amphiprotic Form	Base Form
$\mathrm{H}_{2} \mathrm{~S}$ (hydrosulfuric acid or hydrogen sulfide)	HS ${ }^{-}$(hydrogen sulfide ion)	S^{2-} (sulfide ion)
$\mathrm{H}_{3} \mathrm{PO}_{4}$ (phosphoric acid)	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(dihydrogen phosphate ion) $\mathrm{HPO}_{4}{ }^{2-}$ (hydrogen phosphate ion)	$\mathrm{PO}_{4}{ }^{3-}$ (phosphate ion)
$\mathrm{H}_{2} \mathrm{CO}_{3}$ (carbonic acid)	HCO_{3}^{-}(hydrogen carbonate ion or bicarbonate ion)	$\mathrm{CO}_{3}{ }^{2-}$ (carbonate ion)
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid)	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$(hydrogen oxalate ion)	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ (oxalate ion)

Conjugate Acid-Base Pairs consist of 2 species that differ from each other by the presence of one hydrogen ion. Every reaction between a Bronsted Acid and Base involves a conjugate AcidBase Pair.

Table 17.2 Acid-Base Reactions and Conjugate Acid-Base Pairs*

Name	Acid 1		Base 2		Base 1		Acid 2
Hydrochloric acid	HCl	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	Cl^{-}	$+$	$\mathrm{H}_{3} \mathrm{O}^{+}$
Nitric acid	HNO_{3}	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	$\mathrm{NO}_{3}{ }^{-}$	$+$	$\mathrm{H}_{3} \mathrm{O}^{+}$
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	$\mathrm{HCO}_{3}{ }^{-}$	$+$	$\mathrm{H}_{3} \mathrm{O}^{+}$
Acetic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	+	$\mathrm{H}_{3} \mathrm{O}^{+}$
Hydrocyanic acid	HCN	+	$\mathrm{H}_{2} \mathrm{O}$		CN^{-}	$+$	$\mathrm{H}_{3} \mathrm{O}^{+}$
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	+	$\mathrm{H}_{2} \mathrm{O}$	¢	HS ${ }^{-}$	$+$	$\mathrm{H}_{3} \mathrm{O}^{+}$
Ammonia	$\mathrm{H}_{2} \mathrm{O}$	+	NH_{3}	\rightleftarrows	OH^{-}	+	NH_{4}^{+}
Carbonate ion	$\mathrm{H}_{2} \mathrm{O}$	+	$\mathrm{CO}_{3}{ }^{2-}$	\rightleftarrows	OH^{-}	+	$\mathrm{HCO}_{3}{ }^{-}$
Water	$\mathrm{H}_{2} \mathrm{O}$	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	OH^{-}	+	$\mathrm{H}_{3} \mathrm{O}^{+}$

*Acid 1 and base 1 are a conjugate pair, as are base 2 and acid 2.

17.3 Water and the pH Scale

Autoionization \& K $\mathbf{K}_{\mathbf{w}} \quad 2 \mathrm{H}_{2} \mathrm{O} \quad \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad$ Even ultrapure water conducts electricity
$\mathbf{K w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ at $25^{\circ} \mathrm{C}=$ Waters Auto Ionization Constant
In pure water: $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$
Since $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, pure water is said to be neutral (not acidic or basic)

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right] \text {solution is acid } \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right] \text {solution is basic }
$$

Le Chatelier's Principle says that if you add acid to water the amount of base will decrease, visa versa
Example 17.1 What are the $\mathrm{H}_{3} \mathrm{O}$ and OH^{-}concentrations in 0.0012 M NaOH at $25^{\circ} \mathrm{C}$?
NaOH
\rightarrow
$\mathrm{Na}^{+}+\mathrm{OH}^{-}$
0.0012 M
100\% dissociation
0.0012M
0.0012 M
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 1.2 \times 10^{-3}=8.3 \times 10^{-12} \mathrm{M}$
The $\mathbf{p H}$ Scale: The pH of a solution is the negative of the base ${ }^{10} \log$ of the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathbf{p H}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$
$\mathbf{p O H}=-\log \left(\left[\mathrm{OH}^{-}\right]\right)$
$\mathbf{K w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{Kw} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K} 2 /\left[\mathrm{OH}^{-}\right]$
or $\mathbf{p K w}=14=\mathrm{pH}+\mathrm{pOH}$
$\mathrm{pH}=14-\mathrm{pOH}$
$\mathrm{pOH}=14-\mathrm{pH}$

	pH	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pOH
	14.00	1.0×10^{-14}	1.0×10^{0}	0.00
Basic	10.00	1.0×10^{-10}	1.0×10^{-4}	4.00
Neutral	7.00	1.0×10^{-7}	1.0×10^{-7}	7.00
	4.00	1.0×10^{-4}	1.0×10^{-10}	10.00
Acidic	0.00	1.0×10^{0}	1.0×10^{-14}	14.00

Review Check - Students do calculations

1. What is the pH of 0.0012 M NaOH
2. The pH of diet soda is 4.32 , what is the Hydronium ion concentration
3. The pH of a strong base is 10.46 , what is the Hydronium and Hydroxide ions concentration
17.4 Equilibrium Constants - for weak acids and bases

Weak Acid $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \quad \mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
Weak Base $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{BH}^{+}+\mathrm{OH}^{-} \quad \mathrm{Kb}=\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right] /[\mathrm{B}]$
If K is large, then ionization is favored and molecule is a strong acid or strong base The larger Ka, the smaller Kb The larger Kb, the smaller Ka

SEE TABLE BELOW

Strongest acids are on left and upper
Conjugate base is to its right
Larger Ka, stronger acid
Strongest bases are lower right
Conjugate acid to its left
Larger Kb, stronger base

Table 17.3 Ionization Constants for Some Acids and Their Conjugate Bases at $25^{\circ} \mathrm{C}$

*The values of K_{2} for HS^{-}and K_{b} for S^{2-} are estimates.

$$
\begin{aligned}
& \text { Ka for Polyprotic Acids } \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{HOH} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{--}+\mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned} \begin{aligned}
& \mathrm{Ka} 1=7.5 \times 10^{-3} \\
& \mathrm{H}_{2} \mathrm{PO}_{4}-+\mathrm{HOH} \leftrightarrows \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{Ka}=6.2 \times 10^{-8} \\
& \mathrm{HPO}_{4^{2-}}+\mathrm{HOH} \leftrightarrows \mathrm{PO}_{4^{3-}}+\mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned} \mathrm{Ka3=3.6} \mathrm{\times 10}^{-13}
$$

For each ionization, Ka gets smaller so it's harder to take off the next Hydronium Ion
$\mathrm{pKa}=-\log \mathrm{Ka} \quad \mathrm{pKa}$ can be used to report the strength of an acid

$$
\text { Acetic Acid has } \mathrm{Ka}=1.8 \times 10^{-5} \quad \mathrm{pKa}=-\log \left(1.8 \times 10^{-5}\right)=4.74
$$

Ionization constants for an Acid and it's Conjugate Base: $\mathbf{K a}{ }^{*} \mathbf{K b}=\mathbf{K w}$ This is used to solve for Ka if Kb is given

Weak Acid:	$\mathrm{HCN}+$	$\mathrm{H}_{2} \mathrm{O}$	\leftrightarrows	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$	$\mathrm{Ka}=4.0 \times 10^{-10}$
Conjugate Base	$\mathrm{CN}^{-}+$	$\mathrm{H}_{2} \mathrm{O}$	\leftrightarrows	$\mathrm{HCN}^{-}+\mathrm{OH}^{-}$	$\mathrm{Kb}=2.5 \times 10^{-5}$
	2 H 2 O		\leftrightarrows	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$	$\mathrm{K} 2=1.0 \times 10^{-14}$

17.5 Acid-Base Properties of Salts

Anions can be a Bronsted base because they can accept a proton

$$
\left.\mathrm{CO}_{3^{2-}} \text { (anion }\right)+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \quad \mathrm{Kb}=2.1 \times 10^{-4}
$$

Metal cations (M^{2+} or M^{3+}, are hydrated in water) can be Bronsted acids, they donate protons

$$
\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{Ka}=7.9 \times 10^{-6}
$$

Anions that are a conjugate base of a strong acid are weak bases and do not effect $\mathrm{pH}, \mathrm{Cl}, \mathrm{NO}_{3}{ }^{-}$

$$
\mathrm{HCl} \text { (strong acid) } \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \quad \mathrm{Cl}^{-}+\mathrm{HOH} \rightarrow \mathrm{NR}
$$

Anions that are a conjugate base of a weak acid will raise the pH of a solution
$\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \quad \mathrm{CO}_{3}{ }^{2-}+\mathrm{HOH} \leftrightarrows \mathrm{HCO}_{3}{ }^{-}+\mathrm{OH}^{-} \quad$ Hydroxide is a base
Alkali metal and alkaline earth cations have no measureable effect on solution pH
$\mathrm{Na}^{+}+\mathrm{HOH} \rightarrow \mathrm{NR}$
Acidic Cations (metal cations with 2+ or $3+$ charge) and ammonium ions (and organic derivitives)
area weak acids $\quad\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{Ka}=7.9 \times 10^{-6}$
Polyprotic acids - acid-base behavior depends on the amount of deprotonation:
$\mathrm{H}_{2} \mathrm{CO}_{3}$ is acidic, $\mathrm{CO}_{3}{ }^{2}$ - is basic $\mathrm{HCO}_{3}-$ is amphiprotic

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CO}_{3}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \text {Acid } \rightarrow \quad \leftarrow \text { Base } \quad \text { Acid } \rightarrow \quad \leftarrow \text { Base }
\end{aligned}
$$

Table 17.4 Acid and Base Properties of Some Ions in Aqueous Solution

Neutral			Basic			Acidic
Anions	$\begin{aligned} & \mathrm{Cl}^{-} \\ & \mathrm{Br}^{-} \\ & \mathrm{I}^{-} \end{aligned}$	$\begin{aligned} & \mathrm{NO}_{3}^{-} \\ & \mathrm{ClO}_{4}^{-} \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \\ & \mathrm{HCO}_{2}^{-} \\ & \mathrm{CO}_{3}^{2-} \\ & \mathrm{S}^{2-} \\ & \mathrm{F}^{-} \end{aligned}$	$\begin{aligned} & \mathrm{CN}^{-} \\ & \mathrm{PO}_{4}^{3-} \\ & \mathrm{HCO}_{3}- \\ & \mathrm{HS}^{-} \\ & \mathrm{NO}_{2}^{-} \end{aligned}$	$\begin{aligned} & \mathrm{SO}_{4}^{2-} \\ & \mathrm{HPO}_{4}{ }^{2-} \\ & \mathrm{SO}_{3}{ }^{2-} \\ & \mathrm{Cll}^{-} \end{aligned}$	$\begin{aligned} & \mathrm{HSO}_{4}^{-} \\ & \mathrm{H}_{2} \mathrm{PO}_{4}- \\ & \mathrm{HSO}_{3}^{-} \end{aligned}$
Cations	$\begin{aligned} & \mathrm{Li}^{+} \\ & \mathrm{Na}^{+} \\ & \mathrm{K}^{+} \end{aligned}$	$\begin{aligned} & \mathrm{Ca}^{2+} \\ & \mathrm{Ba}^{2+} \end{aligned}$	$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right.$	${ }^{2+}$ (fo	mple)	$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and hydrated transition metal cations (such as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$) $\mathrm{NH}_{4}{ }^{+}$

Interactive Example 17.2

1. NaNO_{3}
2. $\mathrm{K}_{3} \mathrm{PO}_{4}$
3. FeCl 2
4. NaHCO_{3}

Basic

Weak Acid
Fe^{2+} in water gives $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ which is a Bronsted Acid Cl - is a very weak conjugate base of the strong acid HCl
Amphiprotic See above Polyprotic acids

Increasing Acid Strength			
Acid	$\mathrm{HCO}_{3}{ }^{-}$	HClO	HF
K_{a}	4.8×10^{-11}	3.5×10^{-8}	7.2×10^{-4}
\longleftarrow Increasing Base Strength			
Base	$\mathrm{CO}_{3}{ }^{2-}$	ClO^{-}	F-
K_{b}	2.1×10^{-4}	2.9×10^{-7}	1.4×10^{-11}

17.6 Predicting the direction of Acid-Base Reactions

Acid + Base \leftrightarrows Conjugate base of the acid + Conjugate acid of the base
Reaction/Equilibrium Direction is towards the WEAKER Acid and Base
Predicting the Direction of Acid-
Base Reactions

- According to the Brønsted-Lowry theory, all acidbase reactions can be written as equilibria involving the acid and base and their conjugates.
Acid + Base \square Conjugate base of the acid + Conjugate acid of the base

- All proton transfer reactions proceed from the stronger acid and base to the weaker acid and base.
- When a weak acid is in solution, the products are a stronger conjugate acid and base. Therefore equilibrium lies to the left.

- All proton transfer reactions proceed from the stronger acid and base to the weaker acid and base.

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HOH} \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}=1.8 \times 10^{-5} \quad \text { What's its } \mathbf{p H} ?
$$

In 0.01 M acetic acid, ionization is to about 0.001 M or 99% of the acid is NOT ionized!
Example 17.3 Write balanced equation for reaction between acetic acid and sodium bicarbonate and state which way the reaction will go?

$$
\begin{array}{lllll}
\mathrm{CH}_{3} \mathrm{COOH}+ & \mathrm{HCO}^{-} & \leftrightarrows & \mathrm{CH}_{3} \mathrm{COO}^{-}+ & \mathrm{H} 2 \mathrm{CO} 3 \\
\mathrm{Ka}=1.8 \times 10^{-5} & \mathrm{~Kb}=2.4 \times 10^{-8} & & \mathrm{~Kb}=5.6 \times 10^{-10} & \mathrm{Ka}=4.2 \times 10^{-7}
\end{array}
$$

$\mathrm{H}_{2} \mathrm{CO}_{3}$ is a weaker acid than $\mathrm{CH}_{3} \mathrm{COOH}$
The reaction favors going to the RIGHT
$\mathrm{CH}_{3} \mathrm{COO}^{-}$is a weaker base than HCO_{3}^{-}
Also note that $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
Student Question How will this reaction go? $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{CH}_{3} \mathrm{COO}^{-} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}+\mathrm{CH}_{3} \mathrm{COOH}$

17.7 Acid-Base Reactions

Type	Example	Net Ionic Equation	Species Present after Equal Amounts Are Mixed; pH
Strong acid + strong base	$\mathrm{HCl}+\mathrm{NaOH}$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}(\ell)$	$\mathrm{Cl}^{-}, \mathrm{Na}^{+}, \mathrm{pH}=7$
Strong acid + weak base	$\mathrm{HCl}+\mathrm{NH}_{3}$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$	$\mathrm{Cl}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{pH}<7$
Weak acid + strong base	$\mathrm{HCO}_{2} \mathrm{H}+\mathrm{NaOH}$	$\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftarrows \mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$	$\mathrm{HCO}_{2}{ }^{-}, \mathrm{Na}^{+}, \mathrm{pH}>7$
Weak acid + weak base	$\mathrm{HCO}_{2} \mathrm{H}+\mathrm{NH}_{3}$	$\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftarrows \mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	$\mathrm{HCO}_{2}{ }^{-}, \mathrm{NH}_{4}^{+}, \mathrm{pH}$ dependent on K_{a} and K_{b} of conjugate acid and base

Strong Acid and Strong Base \quad Strong $=100 \%$ ionized in solution

$$
\underset{\substack{\mathrm{HCl} \\ \text { Ionized }} \underset{\mathrm{NaOH}}{\mathrm{Ha} \mathrm{O}^{+}}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\underset{\text { Acid/Base Reaction }}{\mathrm{OH}^{-} \leftrightarrows} 2 \mathrm{H}_{2} \mathrm{O}}{\text { Act }}
$$

The Net Ionic Equation $\quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{K}=1 /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 / \mathrm{Kw}=1.0 \times 10^{14}$
$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{Ka}=1.0)$ and $\mathrm{OH}^{-}(\mathrm{Kb}=1.0)$ - data from acid strength table
Reactions of a strong acid and a strong base are called a Neutralization
Mixing equal molar amounts of a strong acid and strong base results in a neutral pH around 7.O

Weak Acid and Strong Base
Formic Acid and Sodium Hydroxide

Weak Acid is not fully ionized

$\mathrm{HCOOH}+$	OH^{-}		
Weak Acid	Strong Base	$\quad \leftrightarrows \quad$	$\mathrm{H}_{2} \mathrm{O}+$
:---			
Amphoteric		HCOO^{-}	
:---			
Weak Base			

$\mathrm{NaOH}(\mathrm{Kb}=1.0)$ is a stronger base than $\mathrm{HCOO}^{-}\left(\mathrm{Kb}=5.6 \times 10^{-11}\right)$, Reaction goes to the RIGHT Mixing equal molar amounts of a strong base and a weak acid gives a salt whose anion is the conjugate base of a weak acid. The solution is Basic

Strong Acid and Weak Base Weak Base is not fully ionized

Hydrochloric acid and Ammonia $\quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3} \leftrightarrows \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4}^{+}$
Hydronium Ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)(\mathrm{Ka}=1.0)$ is stronger acid than $\mathrm{NH}_{4}^{+}\left(\mathrm{Ka}=5.6 \times 10^{-10}\right)$
$\mathrm{NH}_{3}\left(\mathrm{~Kb}=1.8 \times 10^{-5}\right)$ is a strong base than $\mathrm{H}_{2} \mathrm{O} \quad\left(\mathrm{Kb}=1.0 \times 10^{-14}\right)$, Reaction goes to the RIGHT Mixing equal molar amounts of a strong acid and a weak base gives a salt whose cation is the conjugate acid of the weak base. The solution is Acidic

Reaction of a Weak Acid and a Weak Base Neither fully ionized
Acetic acid and ammonia $\quad \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3} \leftrightarrows \mathrm{NH}_{4}++\mathrm{CH}_{3} \mathrm{COO}^{-}$
$\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)$ is a stronger acid than $\mathrm{NH}_{4}{ }^{+}\left(\mathrm{Ka}=5.6 \times 10^{-10}\right)$
$\mathrm{NH}_{3}\left(\mathrm{~Kb}=1.8 \times 10^{-5}\right)$ is a stronger base than $\mathrm{CH}_{3} \mathrm{COO}^{-}\left(\mathrm{Ka}=5.6 \times 10^{-10}\right)$
Equilibrium is on the side of the weaker acid / base = to the RIGHT
Acetic acid and ammonia yields Ammonium Acetate.
Is the solution Acidic or basic? $\mathrm{NH}_{4}^{+}\left(\mathrm{Ka}=5.6 \times 10^{-10}\right)$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}\left(\mathrm{Ka}=5.6 \times 10^{-10}\right)$
The solution will be neutral
Mixing equal molar amounts o a weak acid and weak base yields a salt, the $\mathbf{p H}$ depends on the relative $\mathrm{Ka} / \mathrm{Kb}$ values.

17.8 Calculations and Equilibrium Constants.

Determine K from initial concentration and pH .
Interactive Example 17.4 O.10 M Lactic Acid $\mathrm{CH} 3-\mathrm{CHOH}-\mathrm{COOH}$ has a pH of 2.43 . What is Ka ?
$\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{COOH}+\mathrm{H} 2 \mathrm{O} \leftrightarrows \mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Lactic Acid Lactate Ion
From $\mathrm{pH}=2.43,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.43}=3.7 \times 10^{-3} \mathrm{M}$

	$\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{COOH}+\mathrm{H} 2 \mathrm{O} \leftrightarrows$	$\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Initial	0.10	0.0 0.0
Change	-x	+x +x
Equilibrium	$0.10-\mathrm{x}$	x x

$\mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{COO}^{-}\right] /\left[\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{COOH}\right]$
$=\quad x * x /(0.10-x)$
At equilibrium:
$\left[\mathrm{CH} 3-\mathrm{CHOH}-\mathrm{COO}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.7 \times 10^{-3} \mathrm{M}$
$\mathrm{x}=$ the amount of Lactic Acid ionized, so the [Lactic Acid] $=0.10 \mathrm{M}-3.7 \times 10^{-3} \mathrm{M}$
$\mathrm{Ka}=3.7 \times 10^{-3} * 3.7 \times 10^{-3} /\left(0.10-3.7 \times 10^{-3}\right)=1.4 \times 10^{-4}$

Note that ($0.10-3.7 \times 10^{-3}$) $=$ approx $=0.10$. Therefore (see discussion in book) for a weak acid:
$[\mathrm{HA}]_{\text {equilibrium }}=[\mathrm{HA}]_{\mathrm{o}}-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx[\mathrm{HA}]_{\mathrm{o}}$ when $[\mathrm{HA}]_{\mathrm{o}}$ is $>=100{ }^{*} \mathrm{Ka}$
pH of a weak acid or base
p-778
Interactive Example 17.5 ? is pH of 0.020 M benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right), \mathrm{Ka}=6.3 \times 10^{-5}$

Initial
Change

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+$	$\mathrm{HOH} \leftrightarrows$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+$	$\mathrm{H}_{3} \mathrm{O}^{+}$
0.02 O		o	o
-x		+x	+x
$(0.020-\mathrm{x})$		x	x

$\mathrm{Ka}=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]=\mathrm{x} * \mathrm{x} /(\mathrm{o} .2 \mathrm{O}-\mathrm{x})$
Since Ka is so small, $(0.020-x) \approx 0.020$
$\mathrm{Ka}=6.3 \times 10^{-5}=\mathrm{x}^{2} / 0.020$
$6.3 \times 10^{-5} * 0.020=x^{2} \quad$ Now take Square Root of both sides
$\mathrm{x}=1.1 \times 10^{-3}=0.0011 \mathrm{M}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}=(0.020-\mathrm{x})=(0.020-0.0011)=0.019 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{x}=1.1 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(1.1 \times 10^{-3}\right)=2.96$
Interactive Example 17.7? is the pH of 0.015 M Sodium Acetate?
Sodium Acetate is basic because acetate is the conjugate base of a weak acid, acetic acid, which reacts with water to form $\mathrm{OH}^{-} .\left\{\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}\right\}$
also show short cut!

Initial
Change
Equilibrium

$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$	$\mathrm{CH}_{3} \mathrm{COOH}+$	OH^{-}
0.015	o	o
-x	-x	-x
$(0.015-\mathrm{x})$	x	x

$\mathrm{K}_{\mathrm{b}}=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=5.6 \times 10^{-10}=\mathrm{x} * \mathrm{x} /(\mathrm{o} .015-\mathrm{x})$
Acetate is a weak base as K is small, so x is very small, so ($0.015-x) \approx 0.015$

$$
\begin{aligned}
& 5.6 \times 10^{-10}=x * x / 0.015 \quad \mathrm{x}^{2}=0.015 * 5.6 \times 10^{-10} \quad \mathbf{x}=\mathbf{2 . 9} \times 10^{-6} \mathbf{M} \\
& \mathrm{Kw}=\left[{\mathrm{H} 3 \mathrm{O}^{+}}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{M} / 2.9 \times 10^{-6} \mathrm{M}=3.5 \times 10^{-9} \mathrm{M} \\
& \mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(3.5 \times 10^{-9}\right)=8.46
\end{aligned}
$$

17.9 Polyprotic Acid and Base

The loss of successive protons is 10^{4} to 10^{6} smaller - harder to pull off the $2^{\text {nd }}$ or $3^{\text {rd }}$ proton! Therefore, the pH is depends on the loss of the $1^{\text {st }}$ proton

Example 17.9 Calculate the pH of o.10 M Sodium Carbonate

$\underline{1} \mathrm{ST} \quad \mathrm{CO}_{3}{ }^{\text {- }}$	$\begin{aligned} & \mathrm{CO}_{3} 2^{-}+\mathrm{HOH} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \\ & \mathrm{HCO}_{3}^{-}+\mathrm{HOH} \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \end{aligned}$		$\mathrm{K}_{\mathrm{b} 1}=2.1 \times 10^{-4}$	
$\underline{\text { 2 }}$ 兄 HCO_{3}			$\mathrm{K}_{\mathrm{b} 2}=2.4$	
${ }_{1} \mathrm{ST}$	$\mathrm{CO}_{3}{ }^{2-}+\mathrm{HOH}$	\leftrightarrows	$\mathrm{HCO}_{3}{ }^{-}$	OH
Initial	0.10		o	о
Change	-x		+x	+x
Equilibrium	$0.10-\mathrm{x}$		x	x

$$
\mathrm{K}_{\mathrm{b}}=2.1 \times 1 \mathrm{O}^{-4}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{3}{ }^{2-}\right]=\mathrm{x} * \mathrm{x} /(\mathrm{o} .1 \mathrm{o}-\mathrm{x})
$$

Since K_{b} is small, x is small and $\left.(0.10-\mathrm{x})\right) \approx 0.10$

$$
\begin{array}{ll}
2.1 \times 10^{-4}=x^{2} / 0.10 & x^{2}=2.1 \times 10^{-4} * 0.10=2.1 \times 10^{-5} \\
\text { pOH }=-\log \left(4.6 \times 10^{-3}\right)=2.34 & \mathbf{p H}=14.00-p O H=14.00-2.34=\underline{\mathbf{1 1 . 6 6}}
\end{array}
$$

2nd	$\mathrm{HCO}_{3}-\mathrm{HOH}$	\leftrightarrows	$\mathrm{H}_{2} \mathrm{CO}_{3}+$	OH^{-}
Initial	$\mathrm{x}=4.6 \times 10^{-3}$		o	4.6×10^{-3}
Change	-y		+y	+y
Equilibrium	$4.6 \times 10^{-3}-\mathrm{y}$		y	$\mathrm{y}+4.6 \times 10^{-3}$

$\mathrm{K}_{\mathrm{b} 2}=2.4 \times 10^{-8}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]=\mathrm{y}\left(4.6 \times 10^{-3}-\mathrm{y}\right) /\left(\mathrm{y}+4.6 \times 10^{-3}\right)$
Since $\mathrm{K}_{\mathrm{b} 2}$ is very small, smaller than K_{b}, the amount of product produced in $2^{\text {nd }}$ step is very small
Therefore $\left[\mathrm{HCO}_{3}{ }^{-}\right]=\left(4.6 \times 10^{-3}-\mathrm{y}\right)$ and $\left[\mathrm{OH}^{-}\right]=\left(\mathrm{y}+4.6 \times 10^{-3}\right)$ is close to 4.6×10^{-3}

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b} 2}=2.4 \times 10^{-8}=\mathrm{y} * 4.6 \times 10^{-3} / 4.6 \times 10^{-3} \\
& \mathrm{y}=\left(2.4 \times 10^{-8}\right) *\left(4.6 \times 10^{-3}\right) / 4.6 \times 10^{-3}=2.4 \times 10^{-8} \mathrm{M}
\end{aligned}
$$

[OH-] from the first step $=4.6 \times 10^{-3} \mathrm{M}$, from the second step $2.4 \times 10^{-8} \mathrm{M}=$ No Effect!!
Acid Strength of Hydrogen Halides: $\quad \mathrm{HI}>\mathrm{HBr}>\mathrm{HCl} \gg \mathrm{HF}$
OxoAcids - acids that contain more than one Oxygen Atom. Acid strength increases with an increase in the number of Oxygen's. HNO_{3} is a stronger acid than HNO 2 .
$\mathrm{HOCl}>\mathrm{HOClO}>\mathrm{HOClO} 2>\mathrm{HOClO}_{4} \quad \mathrm{H} 2 \mathrm{SO}_{4}>\mathrm{H}_{2} \mathrm{SO}_{3}$
$\mathrm{CH}_{3}-\mathrm{COOH}$ (Acetic Acid) < ClCH2-COOH < Cl2CH-COOH $<\mathrm{Cl}_{3} \mathrm{C}-\mathrm{COOH}$
The extra chlorine stabilizes the negative charge of the acid ion ($\mathrm{R}-\mathrm{COO}^{-}$)
Carboxylic Acids (R-COOH) are Bronsted Acids

$$
\mathrm{R}-\mathrm{COOH}+\mathrm{H} 2 \mathrm{O} \leftrightarrows \mathrm{R}^{-\mathrm{COO}^{-}}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Formic Acid $\mathrm{H}-\mathrm{COOH}$ Acetic Acid CH3-COOH
Hydrated Metal Cations are Bronsted Acids:

$$
\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})-\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Lewis Acid and Base Used for non-aqueous solutions!
Lewis Acid can accept a pair of electrons.
Lewis Base donates a pair of electrons
A (acid) + B: (base) $\leftrightarrows ~ A: B$ or A->B Also called a coordinate covalent bond
Ammonia $\mathrm{H}_{3} \mathrm{~N}$: is a good example of a Lewis Base

Metals and water from Complex Ions also called Coordinate Complexes

$$
\mathrm{Fe}^{2+}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) 6\right]^{2+} \text { See water's electron cloud structure below }
$$

Picture from Wikimedia commons
Water pictured above. Assume the Hydrogen's are in the field of this piece of paper. The 2 pair of electrons form orbits going in and out of the plane of the paper.

Amine (Nitrogen containing) will hydrogen bond with water

Amphoteric compounds can behave as an acid or a base:

$$
\begin{aligned}
& \underset{\text { base }}{\mathrm{Al}(\mathrm{OH})_{3}} \downarrow+\underset{\text { and }}{\mathrm{OH}^{-} \rightarrow}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-} \\
& \hline \text {. }
\end{aligned}
$$

$\mathrm{Al}(\mathrm{OH})_{3} \downarrow+3 \mathrm{H}_{3} \mathrm{O}+\rightarrow \mathrm{Al}^{3+}+6 \mathrm{H}_{2} \mathrm{O}$ Base Acid

