Chem 1046 Lecture Notes Chapter 17

These Notes are to **<u>SUPPLIMENT</u>** the Text, They do NOT Replace reading the Text Book Material. Additional material that is in the Text Book will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

NOTE THESE ARE DRAFT LECTURE NOTES!

Asprin – Acetyl Salicylic Acid

Strong Acid

 $HNO_3 + HOH \rightarrow H_3O^+ + NO_3^-$

Weak Acid

CH₃COOH \leftrightarrows H₃O⁺ + CH₃COO⁻

100% dissociated – HNO₃, HCl, H₂SO₄, HClO₄

Acetic Acid or vinegar, less than 100% dissociated

Strong Base

NaOH \rightarrow Na⁺ + OH⁻

NaOH, KOH, Ca(OH)₂

Weak Base

 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$ Ammonia, less than 100% dissociated

Arrhenius Acid: any substance that dissolves in water and increases the concentration of H+

 \rightarrow H⁺ + Cl⁻ **HCl** Arrhenius Acid

Arrhenius Base: any substance that dissolves in water and increases the concentration of OH-

 \rightarrow Na⁺ + OH⁻ NaOH **Arrhenius Base**

Reaction between and acid and a base involves H+ and OH-

NaOH + HCl \rightarrow HOH + NaCl

An acid and a base react for form water and a salt

Bronsted-Lowry acid is a Proton (H+) Donor

Bronsted-Lowry Base is a Proton (H⁺) Acceptor

HCl + Acid	HOH \rightarrow H ₃ O ⁺ + Cl- Base Hydronium Ion	HNO3 + HOH \leftrightarrows NO3 ⁻ + H3O ⁺ Acid Base
NH4+ + Acid	HOH \leftrightarrows NH3 + H3O ⁺ Base	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
08-July-12	Pa	ge 1 of 12

 $\begin{array}{cccc} H_{3}PO_{4} + HOH & \leftrightarrows & HPO_{4}^{2-} + H3O^{+} \\ Acid & Base \end{array} \qquad \begin{array}{cccc} H_{2}PO_{4}^{-} + HOH & \leftrightarrows & HPO_{4}^{2-} + H3O^{+} \\ Acid & Base \end{array}$

 $CO_{3^{2-}} + HOH \stackrel{\leftarrow}{\rightarrow} HCO_{3^{-}} + OH^{-} \qquad [Fe(H_2O)_6]^{3+} + H_2O \stackrel{\leftarrow}{\rightarrow} [Fe(H_2O)_5(OH)]^{2+} + H_3O^{+}$ Which one is the Acid? Which one is the Acid?

Monoprotic Acid are capable of donating one proton: $HCl + HOH \leftrightarrows H_3O^+ + Cl^-$

Polyprotic Acids can donate more than one proton: H₂S, H₃PO₄, H₂CO₃, H₂SO₄

$H_2SO_4 + HOH \leftrightarrows H_3O^+ + HSO_4^-$	1 st Proton removed
$HSO_4^- + HOH \leftrightarrows H3O^+ + SO_4^-$	2 nd Proton removed
$CO_3^{2-} + H_2O \implies HCO_3^- + OH^-$	$HCO_3^- + H_2O \leftrightarrows H_2CO_3 + OH^-$
Base Acid	Base Acid

Amphiprotic(Amphoteric) Can behave as Bronsted Acid, donate H+, or Bronsted Base, accept H+

 $\begin{array}{rll} H_2PO_4^- + H_2O &\leftrightarrows & HPO_4^{2-} + H_3O^+ \\ Acid & & & & \\ \end{array} \begin{array}{rll} H_2PO_4^- + H_2O &\leftrightarrows & H_3PO_4 + OH^- \\ Base \end{array}$

Table 17.1 Polyprotic Acids and Bases					
Acid Form	Amphiprotic Form	Base Form			
H₂S (hydrosulfuric acid or hydrogen sulfide)	HS ⁻ (hydrogen sulfide ion)	S ²⁻ (sulfide ion)			
	$H_2PO_4^-$ (dihydrogen phosphate ion)	PO_4^{3-} (phosphate ion)			
H ₃ PU ₄ (phosphoric acid)	HPO ₄ ²⁻ (hydrogen phosphate ion)				
H ₂ CO ₃ (carbonic acid)	HCO_3^- (hydrogen carbonate ion or bicarbonate ion)	CO ₃ ²⁻ (carbonate ion)			
H ₂ C ₂ O ₄ (oxalic acid)	$HC_2O_4^-$ (hydrogen oxalate ion)	$C_2 O_4^{2-}$ (oxalate ion)			

Conjugate Acid-Base Pairs consist of 2 species that <u>differ from each other by the presence</u> <u>of one hydrogen ion</u>. Every reaction between a Bronsted Acid and Base involves a conjugate Acid-Base Pair.

Name	Acid 1		Base 2		Base 1		Acid 2
Hydrochloric acid	HCl	+	H ₂ 0	\rightleftharpoons	Cl-	+	H_30^+
Nitric acid	HNO ₃	+	H ₂ 0		NO ₃ ⁻	+	H ₃ 0 ⁺
Carbonic acid	H ₂ CO ₃	+	H ₂ 0	\rightleftharpoons	HCO ₃ ⁻	+	$H_{3}0^{+}$
Acetic acid	CH₃CO₂H	+	H₂O	\rightleftharpoons	CH ₃ CO ₂ ⁻	+	H_30^+
Hydrocyanic acid	HCN	+	H ₂ O	\rightleftharpoons	CN ⁻	+	H ₃ 0 ⁺
Hydrogen sulfide	H₂S	+	H ₂ 0	\rightleftharpoons	HS ⁻	+	H_30^+
Ammonia	H ₂ 0	+	NH ₃	\rightleftharpoons	0H ⁻	+	NH ₄ ⁺
Carbonate ion	H ₂ 0	+	CO ₃ ²⁻	\rightleftharpoons	0H ⁻	+	HCO ₃ ⁻
Water	H ₂ 0	+	H ₂ 0	$ \longrightarrow $	0H ⁻	+	H ₃ 0 ⁺

17.3 Water and the pH Scale

Autoionization & K_w 2 H₂O \leftrightarrows H₃O⁺ + OH⁻ Even ultrapure water conducts electricity

 $\begin{aligned} \mathbf{Kw} &= \left[\mathrm{H}_{3}\mathrm{O}^{+} \right] \left[\mathrm{OH}^{-} \right] / \left[\mathrm{H}_{2}\mathrm{O} \right] = \left[\mathrm{H}_{3}\mathrm{O}^{+} \right] \left[\mathrm{OH}^{-} \right] = 1.0 \ \mathrm{x} \ 10^{-14} \ \mathrm{at} \ 25^{\mathrm{o}}\mathrm{C} = \mathrm{Waters} \ \mathrm{Auto} \ \mathrm{Ionization} \ \mathrm{Constant} \\ \mathrm{In} \ \mathrm{pure} \ \mathrm{water:} \qquad \left[\mathrm{H}_{3}\mathrm{O}^{+} \right] = \left[\mathrm{OH}^{-} \right] = 1.0 \ \mathrm{x} \ 10^{-7} \end{aligned}$

Since $[H_3O^+] = [OH^-]$, pure water is said to be neutral (not acidic or basic)

 $[H_3O^+] > [OH^-]$ solution is acid $[H_3O^+] < [OH^-]$ solution is basic

Le Chatelier's Principle says that if you add acid to water the amount of base will decrease, visa versa

Example 17.1 What are the H₃O and OH⁻ concentrations in 0.0012 M NaOH at 25°C?

NaOH	→	Na+ +	OH-
0.0012 M	100% dissociation	0.0012M	0.0012M
$[H_3O^+][OH^-] = 1.0 \ge 10^{-14}$	$[H_3O^+] = 1.0 \ge 10^{-14}$	/ [OH ⁻] = 1.0	$0 \ge 10^{-14} / 1.2 \ge 10^{-3} = 8.3 \ge 10^{-12} \text{ M}$

The pH Scale: The pH of a solution is the negative of the base¹⁰ log of the $[H_3O^+]$

рН	$= -\log ([H_3O^+])$	рОН	= - log ([OH-])
Kw	= $[H_3O^+]$ [OH ⁻] = 1.0 x 10 ⁻¹⁴	or pKv	w = 14 = pH + pOH
[OH-]	$= Kw / [H_3O^+]$	рН	= 14 - pOH
$[H_3O^+$] = K2 / [OH ⁻]	рОН	= 14 - pH

	pН	[H ₃ 0 ⁺]	[OH ⁻]	рОН
Dasia	14.00	$1.0 imes10^{-14}$	$1.0 imes10^{0}$	0.00
Dasic	10.00	$1.0 imes10^{-10}$	$1.0 imes10^{-4}$	4.00
Neutral	7.00	$1.0 imes 10^{-7}$	$1.0 imes 10^{-7}$	7.00
Acidic	4.00	$1.0 imes 10^{-4}$	$1.0 imes10^{-10}$	10.00
	0.00	$1.0 imes10^{0}$	$1.0 imes 10^{-14}$	14.00

Review Check – Students do calculations

- 1. What is the pH of 0.0012 M NaOH $\,$
- 2. The pH of diet soda is 4.32, what is the Hydronium ion concentration
- 3. The pH of a strong base is 10.46, what is the Hydronium and Hydroxide ions concentration

17.4 Equilibrium Constants – for weak acids and bases

Weak Acid	$HA + H_2O \rightleftharpoons H_3O^+ + A^-$	$Ka = [H_3O^+] [A^-] / [HA]$
Weak Base	$B + H_2O \leftrightarrows BH^+ + OH^-$	$Kb = [BH^+][OH^-]/[B]$

If K is large, then ionization is favored and molecule is a strong acid or strong base The larger Ka, the smaller Kb The larger Kb, the smaller Ka

SEE TABLE BELOW

Strongest acids are on left and upper	Strongest bases are lower right
Conjugate base is to its right	Conjugate acid to its left
Larger Ka, stronger acid	Larger Kb, stronger base

Acid Name	Acid	K.	Base	K	Base Name
Perchloric acid	HClO ₄	Large	Cl04-	Very small	Perchlorate ion
Sulfuric acid	H ₂ SO ₄	Large	HSO ₄	Very small	Hydrogen sulfate ion
Hydrochloric acid	HCL	Large	۵-	Very small	Chloride ion
Nitric acid	HNO ₃	Large	NO ₃ -	Very small	Nitrate ion
Hydronium ion	H ₃ 0 ⁺	1.0	HzO	$1.0 imes 10^{-14}$	Water
Sulfurous acid	H ₂ SO ₃	1.2 × 10 ⁻²	HSO3 ⁻	8.3 × 10 ⁻¹³	Hydrogen sulfite ion
Hydrogen sulfate ion	HSO4-	1.2×10^{-2}	S042-	8.3 × 10 ⁻¹³	Sulfate ion
Phosphoric acid	H ₃ PO ₄	7.5 × 10 ⁻³	H ₂ PO ₄ -	$1.3 imes 10^{-12}$	Dihydrogen phosphate ion
Hexaaquairon(III) ion	[Fe(H ₂ 0) ₆] ³⁺	6.3 × 10 ⁻³	[Fe(H ₂ 0) ₅ 0H] ²⁺	$1.6 imes 10^{-12}$	Pentaaquahydroxoiron(III) ion
Hydrofluoric acid	HF	7.2 × 10 ⁻⁴	F	1.4×10^{-11}	Fluoride ion
Nitrous acid	HNO ₂	4.5×10^{-4}	NO2-	2.2×10^{-11}	Nitrite ion
Formic acid	HCO ₂ H	1.8×10^{-4}	HCO ₂ -	5.6 × 10 ⁻¹¹	Formate ion
Benzoic acid	C ₆ H ₅ CO ₂ H	6.3 × 10 ⁻⁵	C ₆ H ₅ CO ₂	$1.6 imes 10^{-10}$	Benzoate ion
Acetic acid	CH ₃ CO ₂ H	1.8 × 10 ⁻⁵	CH3CO2-	5.6 × 10 ⁻¹⁰	Acetate ion
Propanoic acid	CH ₃ CH ₂ CO ₂ H	1.3 × 10 ⁻⁵	CH ₃ CH ₂ CO ₂ -	7.7 × 10 ⁻¹⁰	Propanoate ion
Hexaaquaaluminum ion	[Al(H ₂ 0) ₆] ³⁺	7.9 × 10 ⁻⁶	[Al(H20)50H]2+	$1.3 imes 10^{-9}$	Pentaaquahydroxoaluminum ion
Carbonic acid	H ₂ CO ₃	4.2 × 10 ⁻⁷	HCO3-	2.4 × 10 ⁻⁸	Hydrogen carbonate ion
Hexaaquacopper(II) ion	[Cu(H ₂ 0) ₆] ²⁺	1.6 × 10 ⁻⁷	[Cu(H ₂ 0) _s 0H] ⁺	6.3 × 10 ⁻⁸	Pentaaquahydroxocopper(II) ion
Hydrogen sulfide	H ₂ S	1 × 10 ⁻⁷	HS ⁻	1 × 10 ⁻⁷	Hydrogen sulfide ion
Dihydrogen phosphate ion	H _z PO ₄ -	6.2 × 10 ⁻⁸	HPO42-	1.6 × 10 ⁻⁷	Hydrogen phosphate ion
Hydrogen sulfite ion	HSO3 ⁻	6.2 × 10 ⁻⁸	S032-	1.6 × 10 ⁻⁷	Sulfite ion
Hypochlorous acid	HCLO	3.5 × 10 ⁻⁸	Cl0 -	$2.9 imes 10^{-7}$	Hypochlorite ion
Hexaaqualead(II) ion	[Pb(Hz0)6]2+	1.5 × 10 ⁻⁸	[Pb(H20)50H]+	6.7 × 10 ⁻⁷	Pentaaquahydroxolead(II) ion
Hexaaquacobalt(II) ion	[Co(H ₂ 0) ₆] ²⁺	1.3 × 10 ⁻⁹	[Co(H ₂ 0) ₅ 0H]+	$7.7 imes 10^{-6}$	Pentaaquahydroxocobalt(II) ion
Boric acid	B(0H) ₃ (H ₂ 0)	7.3 × 10 ⁻¹⁰	B(OH)4-	1.4 × 10 ⁻⁵	Tetrahydroxoborate ion
Ammonium ion	NH4+	5.6 × 10 ⁻¹⁰	NH ₃	1.8 × 10 ⁻⁵	Ammonia
Hydrocyanic acid	HCN	$4.0 imes 10^{-10}$	CN-	$2.5 imes 10^{-5}$	Cyanide ion
Hexaaquairon(II) ion	[Fe(H ₂ 0) ₆] ²⁺	3.2 × 10 ⁻¹⁰	[Fe(H ₂ 0) ₅ 0H] ⁺	3.1 × 10 ⁻⁵	Pentaaquahydroxoiron(II) ion
Hydrogen carbonate ion	HCO ₃ -	$4.8 imes 10^{-11}$	CO32-	2.1 × 10 ⁻⁴	Carbonate ion
Hexaaquanickel(II) ion	[Ni(H20)]2+	2.5×10^{-11}	[Ni(H20)50H]+	4.0×10^{-4}	Pentaaquahydroxonickel(II) ion
Hydrogen phosphate ion	HPO42-	3.6 × 10 ⁻¹³	PO43-	2.8 × 10 ⁻²	Phosphate ion
Water	H _z O	1.0 × 10 ⁻¹⁴	OH-	1.0	Hydroxide ion
Hydrogen sulfide ion*	HS-	1 × 10 ⁻¹⁹	5 2-	1×10^{5}	Sulfide ion
Ethanol	C2H50H	Very small	C2H50-	Large	Ethoxide ion
Ammonia	NH ₃	Very small	NH2 ⁻	Large	Amide ion
Hydrogen	н.	Very small	H-	lame	Hudrida ion

*The values of K_a for HS⁻ and K_b for S²⁻ are estimates.

Ka for Polyprotic Acids $H_3PO_4 + HOH \leftrightarrows H_2PO_4^- + H_3O^+$ Ka1 = 7.5 x 10^{-3} $H_2PO_4^- + HOH \leftrightarrows HPO_4^{2-} + H_3O^+$ Ka2 = 6.2 x 10^{-8} $HPO_4^{2-} + HOH \leftrightarrows PO_4^{3-} + H_3O^+$ Ka3 = 3.6 x 10^{-13}

For each ionization, Ka gets smaller so it's harder to take off the next Hydronium Ion 08-July-12 Page **5** of **12**

pKa = - log Ka pKa can be used to report the strength of an acid

Acetic Acid has $Ka = 1.8 \times 10^{-5}$ pKa = $-\log(1.8 \times 10^{-5}) = 4.74$

Ionization constants for an Acid and it's Conjugate Base: **Ka** * **Kb** = **Kw** This is used to solve for Ka if Kb is given

Weak Acid:	HCN +	H_2O	与	H_3O^+ + CN^-	Ka = 4.0×10^{-10}
Conjugate Base	CN- +	<u>H₂O</u>	⇆	HCN + OH-	$Kb = 2.5 \times 10^{-5}$
	2 H2O		⇆	H_3O^+ + OH^-	$K2 = 1.0 \times 10^{-14}$

17.5 Acid-Base Properties of Salts

Anions can be a Bronsted base because they can accept a proton

 $CO_{3^{2-}}(anion) + H_2O \leftrightarrows HCO_{3^{-}} + OH^{-}$ $Kb = 2.1 \times 10^{-4}$

Metal cations (M²⁺ or M³⁺, are hydrated in water) can be Bronsted acids, they donate protons [Al(H₂O)₆]³⁺ + H₂O \leftrightarrows [Al(H₂O)₅(OH)]²⁺ + H₃O⁺ Ka = 7.9 x 10⁻⁶

Anions that are a conjugate base of a strong acid are weak bases and do not effect pH, Cl-, NO₃-

HCl (strong acid) \rightarrow H⁺ + Cl⁻ Cl⁻ + HOH \rightarrow NR

Anions that are a conjugate base of a weak acid will raise the pH of a solution

 $H_2CO_3 \rightarrow CO_3^{2-} + 2 H^+$ $CO_3^{2-} + HOH \rightleftharpoons HCO_3^- + OH^-$ Hydroxide is a base

Alkali metal and alkaline earth cations have no measureable effect on solution pH

 $Na^+ + HOH \rightarrow NR$

Acidic Cations (metal cations with 2+ or 3+ charge) and ammonium ions (and organic derivitives) area weak acids $[Al(H_2O)_6]^{3+} + H_2O \leftrightarrows [Al(H_2O)_5(OH)]^{2+} + H_3O^+$ Ka = 7.9 x 10⁻⁶

Polyprotic acids – acid-base behavior depends on the amount of deprotonation:

H_2CO_3 is acidic, CO_3^{2-} is basic	HCO ₃ - is amphiprotic			
$\begin{array}{rcl} H_2CO_3 + H_2O &\leftrightarrows & HCO_3^- + H_3O^+ \\ Acid & & \leftarrow Base \end{array}$	$\begin{array}{rcl} HCO_{3^{-}} + H_{2}O & \leftrightarrows & CO_{3^{-2}} + H_{3}O^{+} \\ Acid \rightarrow & \leftarrow Base \end{array}$			

Table 17.4 Acid and Base Properties of Some Ions in Aqueous Solution						
Neutral			Basic			Acidic
Anions	Cl− Br− I−	NO ₃ ⁻ ClO ₄ ⁻	$CH_{3}CO_{2}^{-}$ HCO_{2}^{-} CO_{3}^{2-} S^{2-} F^{-}	CN ⁻ PO4 ³⁻ HCO3 ⁻ HS ⁻ NO2 ⁻	S04 ²⁻ HP04 ²⁻ S03 ²⁻ OCL-	HSO_4^- $H_2PO_4^-$ HSO_3^-
Cations	Li ⁺ Na ⁺ K ⁺	Ca ²⁺ Ba ²⁺	$[Al(H_2O)_5(OH)]^{2+}$ (for example)		$[Al(H_2O)_6]^{3+}$ and hydrated transition metal cations (such as $[Fe(H_2O)_6]^{3+}$) NH ₄ ⁺	

Interactive Example 17.2		Are these acid, basic or neutral water solutions
1. NaNO3	Neutral	Na^+ and NO_3^- are very weak conjugate base of a strong acid
2. K3PO4	Basic	$PO_{4^{3^{-}}}$ is the conjugate base of a weak acid, K ⁺ and Na ⁺ are N/A $PO_{4^{3^{-}}} + H2O \iff HPO_{4^{2^{-}}} + OH^{-}$ Goes to the Right
3. FeCl2	Weak Acid	Fe ²⁺ in water gives [Fe(H ₂ O) ₆] ²⁺ which is a Bronsted Acid Cl ⁻ is a very weak conjugate base of the strong acid HCl

4. NaHCO3 Amphiprotic See above **Polyprotic acids**

17.6 Predicting the direction of Acid-Base Reactions

Acid + Base \Rightarrow Conjugate base of the acid + Conjugate acid of the base

Reaction/Equilibrium Direction is towards the WEAKER Acid and Base

 $CH_3COOH + HOH \leftrightarrows CH_3COO^- + H_3O^+$ $K = 1.8 \times 10^{-5}$ What's its pH?

In 0.01 M acetic acid, ionization is to about 0.001 M or 99% of the acid is NOT ionized!

Example 17.3 Write balanced equation for reaction between acetic acid and sodium bicarbonate and state which way the reaction will go?

СН3СООН +	HCO3-	₽	CH3COO-	+	H2CO3
Ka = $1.8 \ge 10^{-5}$	$Kb = 2.4 \times 10^{-8}$		Kb = 5.6 x 1	0 ⁻¹⁰	$Ka = 4.2 \times 10^{-7}$
H2CO3 is a wea	ker acid than CH3C	OOH	CH3COO- is	a wea	ker base than HCO3 ⁻
The reaction fav	vors going to the RI	GHT	Also note th	at H20	$CO_3 \rightarrow CO_2^{\uparrow} + H_2O$

Student Question How will this reaction go? $H_3PO_4 + CH_3COO^- \Leftrightarrow H_2PO_3^- + CH_3COOH$

17.7 Acid-Base Reactions

Table 17.5 Characteristics of Acid-Base Reactions				
Туре	Example	Net Ionic Equation	Species Present after Equal Amounts Are Mixed; pH	
Strong acid + strong base	HCL + NaOH	$H_30^+(aq) + 0H^-(aq) \Longrightarrow 2 H_20(\ell)$	Cl ⁻ , Na ⁺ , pH = 7	
Strong acid + weak base	HCL + NH ₃	$H_30^+(aq) + NH_3(aq) \rightleftharpoons NH_4^+(aq) + H_2O(\ell)$	Cl [−] , NH ₄ ⁺ , pH < 7	
Weak acid + strong base	HCO ₂ H + NaOH	$HCO_{2}H(aq) + OH^{-}(aq) \iff HCO_{2}^{-}(aq) + H_{2}O(\ell)$	HCO ₂ ⁻ , Na ⁺ , pH > 7	
Weak acid + weak base	HCO ₂ H + NH ₃	$HCO_2H(aq) + NH_3(aq) \Longrightarrow HCO_2^{-}(aq) + NH_4^{+}(aq)$	HCO_2^- , NH_4^+ , pH dependent on K_a and K_b of conjugate acid and base	

Strong Acid and Strong Base

Strong = 100% ionized in solution

The Net Ionic Equation $H_3O^+ + OH^- \Rightarrow 2 H_2O = K = 1 / [H_3O^+] [OH^-] = 1 / Kw = 1.0 \times 10^{14}$

 H_3O^+ (Ka = 1.0) and OH^- (Kb = 1.0) – data from acid strength table Reactions of a strong acid and a strong base are called a **Neutralization** *Mixing equal molar amounts of a strong acid and strong base results in a* **neutral pH around 7.0**

Weak Acid and Strong Base

Weak Acid is not fully ionized

Formic Acid and Sodium Hydroxide	HCOOH +	OH-	⇆	H_2O +	HCOO-
	Weak Acid	Strong Base		Amphoteric	Weak Base

NaOH (Kb = 1.0) is a stronger base than HCOO⁻ (Kb = $5.6 \ge 10^{-11}$), Reaction goes to the **RIGHT** *Mixing equal molar amounts of a strong base and a weak acid gives a salt whose anion is the conjugate base of a weak acid. The solution is* **Basic**

Strong Acid and Weak Base Weak Base is not fully ionized

Hydrochloric acid and Ammonia $H_3O^+ + NH_3 \rightleftharpoons H_2O + NH_4^+$

Hydronium Ion (H_3O^+) (Ka = 1.0) is stronger acid than NH_4^+ (Ka = 5.6 x 10⁻¹⁰)

 NH_3 (Kb = 1.8 x 10⁻⁵) is a strong base than H_2O (Kb = 1.0 x 10⁻¹⁴), Reaction goes to the **RIGHT** *Mixing equal molar amounts of a strong acid and a weak base gives a salt whose cation is the conjugate acid of the weak base. The solution is* **Acidic**

Reaction of a Weak Acid and a Weak Base Neither fully ionized

Acetic acid and ammonia $CH_3COOH + NH_3 \Rightarrow NH_4^+ + CH_3COO^-$

CH₃COOH (Ka = 1.8×10^{-5}) is a stronger acid than NH₄⁺ (Ka = 5.6×10^{-10})

NH3 (Kb = 1.8×10^{-5}) is a stronger base than CH₃COO⁻ (Ka = 5.6×10^{-10})

Equilibrium is on the side of the weaker acid / base = to the **RIGHT** Acetic acid and ammonia yields Ammonium Acetate. Is the solution Acidic or basic? NH_4^+ (Ka = 5.6 x 10⁻¹⁰) and CH_3COO^- (Ka = 5.6 x 10⁻¹⁰) The solution will be neutral

Mixing equal molar amounts o a weak acid and weak base yields a salt, the **pH depends** on the relative Ka / Kb values.

17.8 Calculations and Equilibrium Constants.

Determine K from initial concentration and pH. Interactive Example 17.4 0.10 M Lactic Acid CH3-CHOH-COOH has a pH of 2.43. What is Ka?

CH3-CHOH-COOH + H2O \leftrightarrows CH3-CHOH-COO⁻ + H₃O⁺ Lactic Acid Lactate Ion

From pH = 2.43, $[H_3O^+] = 10^{-2.43} = 3.7 \text{ x } 10^{-3} \text{ M}$

	СН3-СНОН-СООН +	H ₂ O ≒ CH ₃ -CHOH-COO ⁻	+ H ₃ O ⁺
Initial	0.10	0.0	0.0
Change	-X	+X	+x
Equilibrium	0.10 – x	X	Х

Ka = $[H_3O^+][CH_3-CHOH-COO^-]/[CH_3-CHOH-COOH]$

At equilibrium:

=

 $[CH_3-CHOH-COO^-] = [H_3O^+] = 3.7 \times 10^{-3} M$

x = the amount of Lactic Acid ionized, so the [Lactic Acid] = 0.10 M - 3.7 x 10^{-3} M

Ka = $3.7 \times 10^{-3} * 3.7 \times 10^{-3}$ / (0.10 - 3.7×10^{-3}) = 1.4 x 10⁻⁴

Note that $(0.10 - 3.7 \times 10^{-3}) = approx = 0.10$. Therefore (see discussion in book) for a weak acid:

p-778

 $[HA]_{equilibrium} = [HA]_0 - [H_3O^+] \approx [HA]_0$ when $[HA]_0$ is >= 100 * Ka

pH of a weak acid or base

Interactive Example 17.5 ? is pH of 0.020 M benzoic acid (C_6H_5COOH), Ka = 6.3 x 10⁻⁵

			ОН	
	C ₆ H ₅ COOH +	НОН ≒	C ₆ H ₅ COO ⁻ +	$H3O^{+}$
Initial	0.020		0	0
Change	- X		+X	+x
Equilibrium	(0.020 – x)		Х	X

 $Ka = [C_6H_5COO^-] [H_3O^+] / [C_6H_5COOH] = x * x / (0.20-x)$

Since Ka is so small, $(0.020 - x) \approx 0.020$

Ka = $6.3 \times 10^{-5} = x^2 / 0.020$ $6.3 \times 10^{-5} * 0.020 = x^2$ Now take Square Root of both sides $x = 1.1 \times 10^{-3} = 0.0011$ M $C_6H_5COOH = (0.020 - x) = (0.020 - 0.0011) = 0.019$ M $[H_3O^+] = x = 1.1 \times 10^{-3}$ M $pH = -\log ([H_3O^+]) = -\log (1.1 \times 10^{-3}) = 2.96$

Interactive Example 17.7 ? is the pH of 0.015 M Sodium Acetate?

Sodium Acetate is basic because acetate is the conjugate base of a weak acid, acetic acid, which reacts with water to form OH⁻. { $CH_3COO^- + H_2O \leftrightarrows CH_3COOH + OH^-$ } also show short cut!

	$CH_3COO^- + H_2O \leftrightarrows$	CH ₃ COOH +	OH-
Initial	0.015	0	0
Change	-X	-X	-X
Equilibrium	(0.015 - x)	Х	Х

 $K_b = [CH_3COOH] [OH^-] / [CH_3COO^-] = 5.6 \times 10^{-10} = x * x / (0.015 - x)$

Acetate is a weak base as Ka is small, so x is very small, so $(0.015 - x) \approx 0.015$

5.6 x 10⁻¹⁰ = x * x / 0.015

$$X^2 = 0.015 * 5.6 \times 10^{-10}$$

 $X = 2.9 \times 10^{-6} M$
 $Kw = [H_3O^+] [OH^-] = 1.0 \times 10^{-14}$
 $[H_3O^+] = 1.0 \times 10^{-14} M / 2.9 \times 10^{-6} M = 3.5 \times 10^{-9} M$
 $pH = -\log ([H_3O^+]) = -\log (3.5 \times 10^{-9}) = 8.46$

17.9 Polyprotic Acid and Base

The loss of successive protons is 10⁴ to 10⁶ smaller – harder to pull off the 2nd or 3rd proton! Therefore, the pH is depends on the loss of the 1st proton Example 17.9 Calculate the pH of 0.10 M Sodium Carbonate

<u>1ST</u>	$CO_3^{2-} + HOH \leftrightarrows HCO_3^{-} + OH^{-}$			$K_{b1} = 2.1 \text{ x } 10^{-4}$		
2 nd	$HCO_3^- + HOH \leftrightarrows H_2CO_3 + OH^-$			$K_{b2} = 2.4 \text{ x } 10^{-8}$		
<u>1ST</u> Initial Chang Equili	the brium $K_b = 2.1 \times 10^{-4}$ Since K_b is sn $2.1 \times 10^{-4} = x^2$ pOH = - log ($CO_3^{2^-}$ + HOH 0.10 -X 0.10 - X $4^+ = [OH^-] [HCO_3^-] /$ hall, x is small and (C $4^+ / 0.10$ $x^2 = 2.$ 4.6 x 10 ⁻³) = 2.34		HCO _{3⁻} + 0 +x x] = x * x / (0.1 x)) ≈ 0.10 + * 0.10 = 2.1 x pH = 14.00 -	OH- 0 +x x 0 - x) $x = 4.6 \times 10^{-3}$ - pOH = 14.00 - 2.34 = 11.66	
<u>2nd</u> Initial Chang Equili	je brium	HCO _{3⁻} + HOH x = 4.6×10^{-3} -y 4.6×10^{-3} -y	Ħ	H ₂ CO ₃ + 0 +y y	OH- 4.6 x 10 ⁻³ +y y + 4.6 x 10 ⁻³	

 $K_{b2} = 2.4 \times 10^{-8} = [H_2CO_3] [OH^-] / [HCO_3^-] = y (4.6 \times 10^{-3} - y) / (y + 4.6 \times 10^{-3})$

Since K_{b2} is very small, smaller than K_b , the amount of product produced in 2nd step is very small Therefore $[HCO_3^-] = (4.6 \times 10^{-3} - y)$ and $[OH^-] = (y + 4.6 \times 10^{-3})$ is close to 4.6 x 10⁻³

 $K_{b2} = 2.4 \times 10^{-8} = y^* 4.6 \times 10^{-3} / 4.6 \times 10^{-3}$ $y = (2.4 \times 10^{-8})^* (4.6 \times 10^{-3}) / 4.6 \times 10^{-3} = 2.4 \times 10^{-8} M$

[OH-] from the first step = 4.6×10^{-3} M, from the second step 2.4×10^{-8} M = No Effect!!

Acid Strength of Hydrogen Halides: HI > HBr > HCl >> HF

OxoAcids - acids that contain more than one Oxygen Atom. Acid strength increases with an increase

in the number of Oxygen's. HNO3 is a stronger acid than HNO2.

HOCl > HOClO > HOClO₂ > HOClO₄ H2SO₄ > H2SO₃

CH3-COOH (Acetic Acid) < ClCH2-COOH < Cl2CH-COOH < Cl3C-COOH The extra chlorine stabilizes the negative charge of the acid ion (R-COO⁻)

Carboxylic Acids (R-COOH) are Bronsted Acids
Formic Acid H-COOHR-COOH + H2O \leftrightarrows R-COO⁻ + H3O⁺Formic Acid H-COOHAcetic Acid CH3-COOH

Hydrated Metal Cations are Bronsted Acids: $[Cu(H_2O)_6]^{2+} + H_2O \quad \leftrightarrows \quad [Cu(H_2O)_5(OH)^{-}]^{2+} + H_3O^{+}$

Lewis Acid and Base Used for non-aqueous solutions!

Lewis Acid can accept a pair of electrons. Lewis Base donates a pair of electrons

A (acid) + B: (base) \leftrightarrows A:B or A->B Also called a coordinate covalent bond

Ammonia H₃N: is a good example of a Lewis Base

Metals and water from Complex Ions also called Coordinate Complexes

 $Fe^{2+} + 6 H_2O \rightarrow [Fe(H_2O)6]^{2+}$ See water's electron cloud structure below

Water pictured above. Assume the Hydrogen's are in the field of this piece of paper. The 2 pair of electrons form orbits going in and out of the plane of the paper.

 $H_2O + CO_2 \leftrightarrows H_2CO_3$

Amine (Nitrogen containing) will hydrogen bond with water

Amphoteric compounds can behave as an acid or a base:

 $\begin{array}{rll} \mathrm{Al}(\mathrm{OH})_{3}\downarrow + & \mathrm{OH}^{-} \twoheadrightarrow [\mathrm{Al}(\mathrm{OH})_{4}]^{-} & & \mathrm{Al}(\mathrm{OH})_{3}\downarrow + & 3 \ \mathrm{H}_{3}\mathrm{O} + \twoheadrightarrow \mathrm{Al}^{3+} + & 6 \ \mathrm{H}_{2}\mathrm{O} \\ & & \mathrm{Base} & & \mathrm{Acid} \end{array}$